Publications using SCONE
If SCONE is helpful for your research, please cite the following paper:
@article{ Geijtenbeek2019, author = {Thomas Geijtenbeek}, title = {SCONE: Open Source Software for Predictive Simulation of Biological Motion}, journal = {Journal of Open Source Software} year = {2019}, volume = {4}, number = {38}, pages = {1421}, publisher = {The Open Journal}, doi = {10.21105/joss.01421}, url = {https://doi.org/10.21105/joss.01421}, }
If you are using the Hyfydy Simulation Engine in your research, please add the following citation:
@misc{Geijtenbeek2021Hyfydy, author = {Geijtenbeek, Thomas}, title = {The {Hyfydy} Simulation Software}, year = {2021}, month = {11}, url = {https://hyfydy.com}, note = {\url{https://hyfydy.com}} }
Below is a non-exhaustive list of publications that used SCONE for their research. Please note this list is not complete – see Google Scholar for all citing articles.
Is your publication missing?
Please leave a message at the SCONE User Forum to get it included in the list.2024
Buchmann, A., & Renjewski, D. (2024). An Open-Source Framework for Sensitivity Analysis of Predictive Neuromuscular Simulations: How Muscle-Tendon Stiffness and Tendon Slack Length Affect Push-Off. Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, (September), 94–101. https://doi.org/10.1109/BioRob60516.2024.10719766
Veerkamp, K., van der Krogt, M. M., Waterval, N. F. J., Geijtenbeek, T., Walsh, H. P. J., Harlaar, J., … Carty, C. P. (2024). Predictive simulations identify potential neuromuscular contributors to idiopathic toe walking. Clinical Biomechanics, 111(April 2023), 106152. https://doi.org/10.1016/j.clinbiomech.2023.106152
Kiss, B., Waterval, N. F. J., van der Krogt, M. M., Brehm, M. A., Geijtenbeek, T., Harlaar, J., & Seth, A. (2024). Minimization of metabolic cost of transport predicts changes in gait mechanics over a range of ankle-foot orthosis stiffnesses in individuals with bilateral plantar flexor weakness. Frontiers in Bioengineering and Biotechnology, 12(May), 1–12. https://doi.org/10.3389/fbioe.2024.1369507
Badie, N., & Schmitt, S. (2024). Enhancing stance robustness and jump height in bipedal muscle-actuated systems: a bioinspired morphological development approach. Bioinspiration and Biomimetics, 19(3). https://doi.org/10.1088/1748-3190/ad3602
van Bijlert, P. A., Geijtenbeek, T., Smit, I. H., Schulp, A. S., & Bates, K. T. (2024). Muscle-driven predictive physics simulations of quadrupedal locomotion in the horse. Integrative And Comparative Biology, 1–21. https://doi.org/10.1093/icb/icae095
Van Der Kruk, E., & Geijtenbeek, T. (2024). Is increased trunk flexion in standing up related to muscle weakness or pain avoidance in individuals with unilateral knee pain; a simulation study. Frontiers in Bioengineering and Biotechnology, 12(April), 1–13. https://doi.org/10.3389/fbioe.2024.1346365
Rhoades, J., & Geijtenbeek, T. (2024). One giant leap Helping astronauts walk safely on the Moon. Significance, 21(4), 6–9. https://doi.org/10.1093/jrssig/qmae055
Jin, W., Liu, J., Zhang, Q., Zhang, X., Wang, Q., Xu, J., & Fang, H. (2024). Forward dynamics simulation of a simplified neuromuscular-skeletal-exoskeletal model based on the CMA-ES optimization algorithm: framework and case studies. Multibody System Dynamics, 525–558. https://doi.org/10.1007/s11044-024-09982-4
van der Kruk, E., & Geijtenbeek, T. (2024). A planar neuromuscular controller to simulate compensation strategies in the sit-to-walk movement. PLoS ONE, 19(6 June), 1–21. https://doi.org/10.1371/journal.pone.0305328
Kaminishi, K., Chiba, R., Takakusaki, K., & Ota, J. (2024). Towards Data Augmentation for Parkinson’s Disease Gait Data Using Neuromusculoskeletal Simulations. In J. L. Pons, J. Tornero, & M. Akay (Eds.), Converging Clinical and Engineering Research on Neurorehabilitation V (pp. 208–212). Cham: Springer Nature Switzerland.
Hou, X., Kaminishi, K., Hasegawa, T., Chiba, R., Takakusaki, K., & Ota, J. (2024). Analysis of Stepping in Place Task in Parkinson’s Disease Using a Predictive Simulation Model. In J. L. Pons, J. Tornero, & M. Akay (Eds.), Converging Clinical and Engineering Research on Neurorehabilitation V (pp. 193–197). Cham: Springer Nature Switzerland.
Jones R, Ratnakumar N, Akbaş K, Zhou X. Delayed center of mass feedback in elderly humans leads to greater muscle co-contraction and altered balance strategy under perturbed balance: A predictive musculoskeletal simulation study. Plos one. 2024 May 24;19(5):e0296548.
Shanbhag, J., Fleischmann, S., Wechsler, I., Gassner, H., Winkler, J., Eskofier, B. M., Koelewijn, A. D., Wartzack, S., Miehling, J. (2024). A sensorimotor enhanced neuromusculoskeletal model for simulating postural control of upright standing. Frontiers in Neuroscience, 18.
2023
Di Russo, A., Stanev, D., Sabnis, A., Danner, S. M., Ausborn, J., Armand, S., & Ijspeert, A. (2023). Investigating the roles of reflexes and central pattern generators in the control and modulation of human locomotion using a physiologically plausible neuromechanical model. Journal of Neural Engineering, 20(6). https://doi.org/10.1088/1741-2552/acfdcc
Lassmann, C., Ilg, W., Rattay, T. W., Schöls, L., Giese, M., & Haeufle, D. F. B. (2023). Dysfunctional neuro-muscular mechanisms explain gradual gait changes in prodromal spastic paraplegia. Journal of NeuroEngineering and Rehabilitation, 20(1), 1–19.
Omura, Y., Togo, H., Kaminishi, K., Hasegawa, T., Chiba, R., Yozu, A., … Ota, J. (2023). Analysis of abnormal posture in patients with Parkinson’s disease using a computational model considering muscle tones. Frontiers in Computational Neuroscience, 17. https://doi.org/10.3389/fncom.2023.1218707
Puladi, B., Ooms, M., Geijtenbeek, T., Trinler, U., Houschyar, K. S., Gruber, L. J., … Modabber, A. (2023). Tolerable degree of muscle sacrifice when harvesting a vastus lateralis or myocutaneous anterolateral thigh flap. Journal of Plastic, Reconstructive and Aesthetic Surgery, 77, 94–103. https://doi.org/10.1016/j.bjps.2022.10.036
Jabeen, S., Baines, P. M., Harlaar, J., Vallery, H., & Berry, A. (2023). Reaction moments matter when designing lower-extremity robots for tripping recovery. PLoS ONE, 18(2 February), 1–27.
Moustridi, E., Risvas, K., & Moustakas, K. (2023). Predictive simulation of single-leg landing scenarios for ACL injury risk factors evaluation. PLoS ONE, 18(3 March), 1–26. https://doi.org/10.1371/journal.pone.0282186
Veerkamp, K., Carty, C. P., Waterval, N. F. J., Geijtenbeek, T., Buizer, A. I., Lloyd, D. G., … van der Krogt, M. M. (2023). Predicting Gait Patterns of Children With Spasticity by Simulating Hyperreflexia. Journal of Applied Biomechanics, 39(5), 333–346. https://doi.org/10.1123/jab.2023-0022
Waterval, N. F. J., Brehm, M. A., Veerkamp, K., Geijtenbeek, T., Harlaar, J., Nollet, F., & van der Krogt, M. M. (2023). Interacting effects of AFO stiffness, neutral angle and footplate stiffness on gait in case of plantarflexor weakness: A predictive simulation study. Journal of Biomechanics, 157(July), 111730. https://doi.org/10.1016/j.jbiomech.2023.111730
2022
Muñoz, D., De Marchis, C., Gizzi, L., & Severini, G. (2022). Predictive simulation of sit-to-stand based on reflexive-controllers. PloS One, 17(12), e0279300. https://doi.org/10.1371/journal.pone.0279300.
Koelewijn, A. D., & Bogert, A. J. van den. (2022). Antagonistic Co-contraction Can Minimise Muscular Effort in Systems with Uncertainty. PeerJ, 1–23. https://doi.org/10.7717/peerj.13085.
2021
Russo, A. Di, Stanev, D., Armand, S., & Ijspeert, A. (2021). Sensory modulation of gait characteristics in human locomotion: A neuromusculoskeletal modeling study. PLoS Computational Biology (Vol. 17). https://doi.org/10.1371/journal.pcbi.1008594
Veerkamp, K., Waterval, N. F. J., Geijtenbeek, T., Carty, C. P., Lloyd, D. G., Harlaar, J., & van der Krogt, M. M. (2021). Evaluating cost function criteria in predicting healthy gait. Journal of Biomechanics, 123, 110530. https://doi.org/10.1016/j.jbiomech.2021.110530
Ping, C. C., Ting, Y. Y., Gouwanda, D., Gopalai, A. A., & Zheng, C. Y. (2021). The Effect of Quadriceps Contractures on Gait and its Adaptation Strategy. 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), 35–40. https://doi.org/10.1109/IECBES48179.2021.9398766
Ratnakumar, N. and Zhou, X. (2021). Optimized Torque Assistance during Walking with an Idealized Hip Exoskeleton. International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC-CIE), paper number: IDETC2021-71376, pp. 1-10, 2021.
2020
Waterval, N. F. J., Veerkamp, K., Geijtenbeek, T., Harlaar, J., Nollet, F., Brehm, M. A., & van der Krogt, M. M. (2020). Validation of forward simulations to predict the effects of bilateral plantarflexor weakness on gait. Gait and Posture, 87(December 2020), 33–42. https://doi.org/10.1016/j.gaitpost.2021.04.020
Li, X., Chen, J., Wang, W., Zhang, F., Han, H., & Zhang, J. (2020). Using Predictive Simulation Methods to Design Suitable Assistance Modes for Human Walking on Slopes. 2020 3rd International Conference on Control and Robots, ICCR 2020, 169–175. https://doi.org/10.1109/ICCR51572.2020.9344320
Wang, Y., Liu, Z., Zhu, L., Li, X., & Wang, H. (2020). An impedance control method of lower limb exoskeleton rehabilitation robot based on predicted forward dynamics. Proceedings - 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2020, 1515–1518. https://doi.org/10.1109/TrustCom50675.2020.00206
2019
Ong, C. F., Geijtenbeek, T., Hicks, J. L., & Delp, S. L. (2019). Predicting gait adaptations due to ankle plantarflexor muscle weakness and contracture using physics-based musculoskeletal simulations. PLoS Computational Biology, 15(10), e1006993. https://doi.org/10.1371/journal.pcbi.1006993
Jabeen, S., Berry, A., Geijtenbeek, T., Harlaar, J., & Vallery, H. (2019). Assisting gait with free moments or joint moments on the swing leg. IEEE International Conference on Rehabilitation Robotics, 2019-June(June), 1079–1084. https://doi.org/10.1109/ICORR.2019.8779389